Print this page

Published: 9 March 2011

Ceiling fans cut office aircon loads


Ceiling fans in office environments can reduce reliance on air-conditioning and considerably reduce energy consumption, according to Cairns-based engineering firm MGF Consultants.

With a range of comfort, environmental and financial benefits, ceiling fans are making a comeback in commercial offices.
With a range of comfort, environmental and financial benefits, ceiling fans are making a comeback in commercial offices.

‘Having ceiling fans on medium all day allows us to run our air-conditioning at a temperature of 25.5 degrees rather than the typical 23.5 degrees most office environments would favour,’ says Mr Carl Gray, the company’s lighting and sustainability consultant.

Mr Gray adds that ceiling fans are becoming popular in ‘green’ buildings, which often have higher ceilings to allow more natural light.

‘The sustainability message is really getting through and we are returning to many design concepts that can be traced back to the 1930s, with higher ceilings, more natural light and less fluorescent lighting,’ he says.

Mr Philip Allen, Managing Director at Hunter Pacific, an Australian fan and light designer, says ceiling fans reduce energy costs and improve comfort levels.

‘Ceiling fans act to de-stratify the air in a room and break up hot and cold pockets of air that form in corners and along ceilings and floors,’ he says. ‘As a result, air-conditioner thermostats can be set at a level requiring less cooling or heating, so less energy is used.

‘Ceiling fans are invaluable in winter also. When combined with heating, they keep the warm air circulating throughout the room rather than accumulating on the ceiling, resulting in lower energy consumption.’







Published: 9 March 2011

Zero Carbon Australia plan, revisited

Matthew Wright and Patrick Hearps

In 2010 the Beyond Zero Emissions group released a report with the University of Melbourne’s Energy Research Institute claiming that Australia could be powered by renewable energy sources by 2020. Here its lead authors reply to some of the points raised by Dr Mark Diesendorf’s review of the report in ECOS 157.

This Gemasolar CST plant in Seville, Spain, is despatching electricity to the Spanish grid.
This Gemasolar CST plant in Seville, Spain, is despatching electricity to the Spanish grid.
Credit: Torresol Energy/SENER

The Zero Carbon Australia (ZCA) Stationary Energy Plan sets out strategies for powering Australia with 100 per cent renewable energy by 2020. While the plan stands alone as the only technical blueprint for completely decarbonising the domestic energy sector, it is a work in progress. There are areas to improve and some clarifications we would like to make about some of the recommendations.

Our research was undertaken with two explicit parameters: energy technologies selected had to be both commercially available and from carbon-free renewable energy sources. This explains why the ZCA Plan identifies a 60/40 mix of concentrated solar thermal (CST) power and large-scale wind developments as the backbone of a decarbonised energy system. Together with existing hydropower, investment in CST with molten salt storage, backup from a small percentage of biomass power, an upgraded electricity grid, and comprehensive energy efficiency measures, Australia can reliably meet its energy needs from renewable electricity generation. The technologies selected were not preordained; rather they were chosen on the basis that they worked within ZCA’s parameters.

The ZCA scenario also includes natural gas. Under the plan, Australia would use existing gas infrastructure in a staged scale-back, until the last gas power plants are mothballed in 2020. The most carbon-intensive coal power plants must be first to be decommissioned as large-scale renewables come online, made possible by the deployment of CST power towers with molten salt storage for 24-h operation.

CST is a nascent, commercially available energy technology. At November 2010, there were 632.4 electrical megawatts (MWe) of CST operating in Spain, including 250 MWe with storage, and a further 422 MWe in the US. Another 2000 MWe are in advanced stages of construction and development in Spain. This project pipeline amounts to over a US$20 billion investment. Meanwhile, in the US, federal loan guarantees and cash grants have fostered the approval of over 4 000 MW of CST, many of which have begun construction.

The CST plants in the ZCA Plan are modelled on the Spanish Gemasolar plant, which is now dispatching electricity to the Spanish grid. Our cost projections are based on those from existing projects in the US and Spain, with provisions for significant cost reductions following the first 1000 MWe installed.

The infrastructure rollout proposed under the ZCA plan, including these CST plants, is well within Australia’s industrial capability. Dr Diesendorf presents a global shortage of electrical engineers as a constraining factor. However, CST plants constructed under the ZCA plan would be replicated with a standardised series of plants, reducing the need for electrical engineers who are mostly required during the design phase.

As to the value of an east–west transmission link, more detailed modelling will be conducted for version 2.0 of the ZCA plan. Even without this data, it is premature to rule out the cost effectiveness of a transcontinental grid. Siemens proposes an east–west link in its 2010 report Picture the Future: Australia – Energy and Water. High-voltage direct current (HDVC) infrastructure is already in widespread use in the US, Canada, Europe and South America, and China has now commissioned the 2071 km Xiangjiaba-Shanghai 800 kV Ultra HVDC link.

The ZCA plan puts forward a single scenario largely in order to identify the specific challenges around implementation. We do not claim that the current iteration of the ZCA plan is the optimal solution. We would like to invite engineers and scientists from around Australia to provide their services as pro bono researchers with the Zero Carbon Australia project and make version 2.0 an even stronger document than the first.

We don’t think the Zero Carbon Australia initiative is brave. We think it’s necessary.

Matthew Wright and Patrick Hearps are lead authors of the Zero Carbon Australia Stationary Energy Plan. Matthew Wright is Executive Director of Beyond Zero Emissions and the 2010 Environment Minister’s Young Environmentalist of the Year. Patrick Hearps is a research fellow at the University of Melbourne’s Energy Research Institute.


More information

Mark Diesendorf’s review of the ZCA plan (‘Ambitious target does not quite measure up’):
www.ecosmagazine.com/?paper=EC10024
ZCA plan: www.ZeroCarbonPlan.org/
Basis for cost projections for CST plants:
US National Energy Renewable Laboratory – www.nrel.gov/csp/pdfs/35060.pdf







ECOS Archive

Welcome to the ECOS Archive site which brings together 40 years of sustainability articles from 1974-2014.

For more recent ECOS articles visit the blog. You can also sign up to the email alert or RSS feed